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An Algorithmic Approach to Assessing Behavior Potential:

Comparison with Item Forms and Hierarchical rechnologies1

JOhn H. Durnin and Joseph M. Scandura

University of Pennsylvania

Recent research in individualized (e.g., Lipson, 1967) and computer

assisted (e.g., Suppes, 1966) instruction has led to an increasing aware-

ness of the inadequacies of norm referenced testing and the need for

testing procedures which determine each individual's mastery on specific

types of tasks (e.g., Coulson & Cogswell, 1965). Knowing how well a

student has performed relative to some peer group, for example, says

relatively little about the kinds of decisions that must be made if instruc-

tion is to be totally individualized. Ideally, in mastery testing the

procedures used should 1) pravide a sound basis for diagnosing individual

strengths and weaknesses on each type of task, 2) require as few items as

possible, and 3) provide a basis for generalizing from overall test per-

formance to behavior on a clearly defined universe or domain of tasks.

'This article is based on a Ph.D. dissertation submitted by the first
author under the second author's chairmanship to the University of Pennsyl-
vania. This study was supported by U.S. Office of Education Grant 3-71-
0136 And, in part, by National Science FoundatiOn.Grant GW6796, both to
the second author. continued
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If, in addition, items can be ordered according to difficulty to allow

for conditional (sequential) testing, efficiency could be further

increased.

Fortunately, a number of new technologies have recently been

developed for constructing tests that have the above characteristics (e.g.,

Ferguson, 1969; }lively, Patterson & Page, 1968; Johnson, 1970; Nitkot

1970; Osburn, 1968; Rabehl, 1970; Roudabush & Green, 1971; Scandura,

1971a, 1972). The purpose of this study was to compare with respect to

these characteristics three of the technologies: the item forms tech-

nology (domain referenced testing) of Hively et al. (1968), the hierarchi-

cal or stratified item forms technology of Ferguson (1969), and the algo-

rithmic technology of Scandura (1971a, 1972).

In domain referenced testing, a defined universe or domain of items

(e.g., column subtractiOn problems) is subdivided into classes of items

or item forms on the basis of observable properties the items in each class

have in common. Osburn (1968) characterized an item form as having a fixed

syntactical structure (e.g., :2), one or more elements (e.g., -if, -ig)

and explicit criteria for specifying which elements belong to the form

(eg 2 X =I x1 x2; y y1 y2; yr< y2< x2; x1, x2, yl, y2 .

To assess pupil performance on a given domain of problems a test is construc-

ted by randomly selecting one item from each of the identified forms.

It was felt by Hively et al. (1968) that item forms might be used

not only to assess a pupil's overall performance on the domain of problems

The authors thank Alfonso Georeno and David Shore for their cooperation
in providing subjects. The authors would also like to thank Frederick Davis,
James Diamond, Zoltan Domotor and Albert Oliver for helpful comments on an
earlier version of this paper.
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but also to predict his behavior on specific problems in the domain.

That is, if a subject were successful on one problem belonging to an item

form, then he would be successful on any other problem of the same form,

and similarly if he were unsuccessful on a problem belonging to an item

form, he would be unsuccessful on any other problem of the same form.

Although Hively et al. (1968) were able to obtain high coefficients of

generalizability (Cronbach, Rajaratnam, & Gleser, 1963; Rajaratnam, Cron -

bach, & Gleser, 1965) for tests based on the item forms technology, they

did not find thatitemforms, in general, represented homogeneous categories

of problems of the type described above.

Ons criticism of the item forms technology has been that the

hierarchical relationships among item forms have not been taken into

account in testing (e.g., Nitko, 1970). In a recent study by Ferguson

(1969) these relationships were dealt with explicitly. In this study, item

forms were generated for both terminal and prerequisite instructional

S.

objectives in a way analogous to task analysis (e.g., Gagne, 1962).

Starting with a terminal item form, corresponding to a terminal instructional

objective, sub-item forms (i.e., subobjectives) were identified which were

considered prerequisite to the terminal item form. The item forms so

identified were then ordered according to the hypothesized hierarchical

structure and a computer was programmed to make branching decisions based

on probabilistic evaluations of student performance on each of the forms.

Clearly, a conditional testing procedure of this sort could conceivably

provide a highly efficient basis for assessing the behavior potential of

individual subjects.
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Although the technologies for assessing mastery developed by Hively

et al. (1968) and Ferguson (1969) appear to be major steps toward imr!oved

mastery and diagnostic testing, they are subject to one fundamental

criticism. There is no real theoretical basis for either technology.

With the possible exception of Ferguson's hierarchical ordering of forms,

which is based essentially on task analysis, there is little basis other

than (possible) sound intuitive judgment as to how items should be cate-

gorized. As a result, both technologies can be criticized on a priori,

grounds. For example, the item forms identified for subtraction by

Hively et al., and thcise identified by Ferguson, both failed to partition

the domain of subtraction problems into mutually exclusive and exhaustive

classes (i.e., equivalence classes). This lack of partition may very well

have contributed to Hively et al.'s finding that item forms did not repre-

sent homogeneous classes of items. In general, it is not an easy task to

generate item forms which will partition a domain. Also, once a set of

item forms has been generated, it is difficult to determine whether or not

the item forms do indeed form a partition.

Furthermore, neither technology specifically takes into account the

knowledge which makes it possible to solve problems belonging to a given

domain. This is an important limitation because there can be any number

of ways of solving problems within a domain. For example, there are

several common rules a pupil may use to solve subtraction problems. His

performance on such problems could be due to his mastery of any one of

these rules. (Identifying what rules may be used on a domain of problems

also has important implications for providing remediation, and more is
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said on this below.)

Scandura's (1971a, 1972) theory of structural learning provides a

theoretical basis for an algorithmic technology to assessing behavior

potential which deals directly with the above problems. This theory

consists of three hierarchically related partial theories: a theory of

knowledge, a memory-free theory of learning and performance, and a theory

of memory. For present purposes two basic assumptions of the memory-free

theory suffice. Stated simply, they are that people use rules to solve

problems and that if an individual has learned a rule for solving a given

problem or task, then he will use it.

To see how these assumptions are involved, notice that if an observer

knows what rule or rules a subject has available for solving a given

domain of problems, then he can predict perfectly the subject's performance

on problems in that domain. Unfortunately, the observer generally has no

a priori way of knowing this. Nonetheless, with many familiar tasks (e.g.,

ordinary subtraction) there is a limited number of rules that subjects

in a given population are most likely to use (e.g., the "borrowing" and

"equal addition" methods for subtraction), and the first step in assessing

behavior potential is for the observer-theorist to identify them.

It does not necessarily follow, of course, that every subject (or

even any subject) will know any one of these rules completely. Rules

consist of operations and branching decisions (i.e., subrules) which are

performed in certain specified orders (see Scandura, 1970b, 1971a).

The branching decisions of the rule serve to conbine the operations in

different ways for solving different kinds of problems. Thus a subject
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may know part of a rule or parts of several rules and, hence, may solve

certain tasks governed by the rule(s) but not others. The object of

testing is to deterlaine from a subject's performance on a limited number

of problems what parts of the rule or rules he knows and what parts he

does not know.

Now the operations and branching decisions of a rule can be described

or listed in much the same way that one constructs a computer program.

(An alternative description is a flow chart. When discussing rules in which

the operations and branching decisions are made explicit in either of these

two ways, the term alprithm is used.) From the list or program one can

see that there are a finite number of ways In which the subrules may be

combined or sequenced to solve problems.2 These sequences of subrules,

called paths, partition the domain of tasks governed by an algorithm

into equivalence classes.

Consider, for example, the domain described by "Find sums (less than

100) for column addition using two or more addends of one digit."3 An

algorithm governing this domain may be characterized by the following pro-

gram:

2
Some of the sequences involve cycles or loops in which the same

subrules may be repeated indefinitely. Each traversal thrGugh a loop,
of course, generates a new extended sequence of the same subrules.
However, because no new subrules are added or deleted, these sequences
are considered equivalent.

3This description of a class of tasks was adapted from a list of
objectives for the Individualized Prescribed Instruction Program at the
University of Pittsburgh's Learning Research and Development Center,
September, 1965.
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1. Add the top two addends.

2. If there are no other addends, go to 3;

otherwise go to 4.

3. Write the sue and stop.

4. Add the units digit of the obtained

sum to the next addend.

5. If the sum is greater than 10, go to 6;

otherwise go to 7.

6. Add 1 to'whatever is in the tens place

and return to 2.

7. Return to 2.

s
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8

This algorithm can be represented by a directed

graph in which the numbered arcs correspond to subrules and

points to branching decisions (i.e., "if" statements) as

follows:

From the graph it can be determined that there are four

paths (i.n., sequences of subrules) through the algorithm.

1 3
a. Path

lems having only

1 3
b. Path 2.,

-1117f-1

is used to solve prob-

,

two addends (e.g.,0_ ).

p is used to solve

problems having more than two addends but

with intermediate sums less than ten and

1
the final sum less than nineteen (e.g.,11 ).

t 3
c. Path 3, , is used to solve prob-

n 6
lems having more than two addends where

successive sums increment the tens place

%(e.g., 2 i
IL

de Path 40 ..2-4/a4-* p is used to solve prob-
rre&

lems having more than two addends where the

successive sums may or may not increment the
110

tens place (e.g,, S ),
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It is easy to see from this example, then, that paths partition the

domain governed by an algorithm into equivalence classes. That is, two

problems are equivalent if and only if they are solvable by the same path

through the algorithm.

If the constituent subrules of an algorithm are atomic (i.e., a

subrule can be used by a subject on all or none of its instances) for

any given subject, then it follows logically that the paths of the

algorithm will also be atomic. This implies that if the subject is

successful on any one item e an equivalence class, then he should be

successful on any other and similarly for failure. Hence, to assess

his behavior potential all that is needed is one item from each equiva-

lence class.

As was mentioned earlier, of course, there may be nore than one

feasible algorithm underlying a domain of tasks. If several algorithms

are .,dentified, then it is likely that some of these algorithms will

partition the domain differently. This slight complication can be easily

handled, however, by forming what we shall call an intersection partition

on the given domain of tasks. The intersection partition is formed by

selecting oneeTivalence class from each partition and taking their

intersection. The collection of all possible non-empty intersections
4

formed in this way generates the intersection partition. Generally,

4To see in more detail how these intersections may be obtained, let A -.A.K
represent an equivalence class associat.ed with path Atof algorithm 14 .

The collection of intersection sets for m algorithms can be generated by

t eking A41 kart, (114:111 A Azo, where the 44tvary over all paths

of the algorithms. If there arelni, paths per algorithm, then there can

be at mostitift non-empty intersections.
kii 10
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the intersection partition is a finer partition of the domain than the

partition associated with any one algorithm. To assess behavior potential

simultaneously with respect to all of the identified algorithms, one

item from each equivalence class belonging tp the intersection partition

is randomly selected for testing.

In order for this assessment procedure to be applicable to a given

population of subjects, the observer must assume that he has refined the

algorithms to a point where the subrules are atomic for most of the

subjects. According to the theory, this is always possfble in principle

because the subrules of an algorithm may be decomposed into ever finer

subrules. Indeed, rules can be reduced to associations (Arbib, 1969;

Scandura, 1970a, 1970b, 1972; Suppes, 1969), which under memory-free

conditions are necessarily atomic. Although this can always be done

for a given population, what is gained at this level of atomicity is

lost in testing efficiency. More test items

11
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are needed. In practice, the goal is to find some

optimal level of refinement.

The algorithnic technology also provides a basis for

ordering classes of problems according to difficulty*

Certain paths in an algoritha are superordinate to other

paths in that they contain alithe atamic rules of the
A

subordinate path plus some of their own (e.g., path 4 of

the above algorithm is superordinate to paths 1, 2, and 3).

Since the superordinate path is more difficult (on the

basis of having more constituent rules) than a subordinate

path, and since the branching decisions in the superor-

dinate path account for all performance capable by means

of the subordinate path, it follows that if a subject can

use the superordinate path, he should also be able to use

the subordinate path. Hence, success on problems associated

with a superordinate oath should imply success on all
problems associated with relativ4Ysubordinate paths. An4

example of this partial hierarchical ordering is the

following lattice representing the ordering of paths for the

above algorithm.

raik t

railt

reek t

Empirical support for.the above analysis was obtained

Peak IA

49
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by Scandura and Durnin (rep*rted in Scandura, 1971a 1972).

In that study a variety of tasks ware usvd and the subjects

ranged in ability fr*A prenchl to .graduate level. The

atomic rules of an algorithm were given or "built into"

each subject and he was prc.vided an opprtunity to put

the rules together to solve problecAs balonging to the

domain of the algorithnt. [The thet!xy of structural learn-

ing acck.mnts for the c:xabdning of subrules through*the

use of higher order rules (see Scandura, 1970a);1 Each

subject was then tested on one iteza fro:a each equivalence

class associated with a path of the alg*rithm. Based on

first test performance predictions were vade concerning

performance on individual second test itezAs. The results

of the study shwed that prediction of cGnbined success and

failure on second test ite:s was p:)ssible with 96% accuracy.

rurthemore, it was ff)und that in 95% of the cases where a

subject was successful on a suporordinate path he was als

successful on all subr)rdinate paths.

To detemine the accuracy of tha.abilve analyses

under classroom ccmditions an exploratnry study was

conducted in which the atomic rules of the algorithns were

assuned rather than "built into" the subjects.

Forty four subjects in twm first year highsch:xDl
4..........."11..1110.111.010.11011.........

5
The correlation between corresponding items was .92.

13
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algebra classes were given two tests on factoring monic

trinomials shortly after they had completed a unit on that

topic. The tests were devised by first identifying the

procedure used in the text and determining those rules

which the author of the text assumed the students knew

(ise., that were atomic) and, then, constructing two sets

of test items corresponding to each path in the procedure.

As in the previous study first test performance was

used to predict second test performance. The reSults of

the study showed that prediction on individual second test

items was possible with 861accuracy.6. And in 67% of the

cases where a subject was successful on a superordinate

path he also was successful on all subordinate paths.

By way of summary, it is important to notice that

the .algorithtnic approach to assessing behavior potential,
. deals directly with all of the

questions raised earlier. It provides a theoretical basis

for categorizing classes of problems and assures that this

categorization partitions the domain of problems into

equivalence classes. It also provides a theoretical 'basis

for the hierarchical relationship between tasks and takes

into account the different ways in which a domain of tasks

may be solved. (The impAcation of this for task analysis,

of course, is that there can be more than one way of hier-

archically ordering problems within a given domain of tasks.

&The c,.Irrelation between corresp-.3nding items was .60.

.
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In fact, thare is a different hierarchy for each rule

governing the domain.)

Granting the more rigorous theoretical foundations

for the algorithmic technology, its pragmatic value

relative to other existing technologies was still an open

question* The objective of this study?was to help clarify

this issue* Specifically, we wanted to determine whether

or not the algorithmic itippioadh to assessing behavior

potential was an improvement over the technologies developed

by Nively at Mao (1968) and Ferguson (1969)* The domain

of column sUbtraction probaems was chosen for the compar-

ison because of the availability in the literature of

relevant information (i.e., Hivelygg: D2.*, 1968; Ferguson,

1969)*

For the purposes of this study, improvement meant

one or more of the following:

a* an improvement in predictions concerning

the performance of individual sUbjects on

particular kinds of test items,

be an improvement in the degree of generaliza-

bility (from test items to a clearly

specifieq\domain),

c* a reduction in the number of test instances

required to determine behavior potential, and

de an improvement in the hierarchical Ordering

15
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of tasks (with its itportant implications

for conditional testing).
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METHOD

The algorithmic technology was used to construct four algorithms

for column subtraction. Two algorithms were based on a "borrowing"

procedure for sUbtraction and consisted of 6 and 5 paths, respectively.

The other two algorithms were based on an "equal additions" procedure

and consisted of 4 and B paths, respectively. The intersection partition

with respect to all four algorithms was then constructed (see footnote

4). It contained 12 equivalence classes. The flow chart of the Sub-

traction algorithm shoWn in Figure 1 was designed explicitly to have a

path corresponding to each and every equivalence class in the intersection

partition.

Insert Figure 1 about here

The directed graph, the twelve possible paths, and items from

corresponding equivalence classes of the subtraction algorithm of Figure

1 are shown in Figure 2. The numbered arcs in the graph and paths

correspond to rules in the flow Chart and the points to the initial

(START), terminal (STOP) and branching rules of the flow chart.

O11..I11........
Insert Figure 2 about here

.10.wolm=0..........

Hively et al. (1968) used an item forms analysis of subtraction

problems to identify 28 subclasses of problems. Of these 28 subclasses,

the following 22 pertained to columa subtraction:

1. Basic fact; minuend 4: 10

2. Subtract 0 17
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3* Answer = 0

4. Basic fact; minuend> 10

5* No borrow; no 0 in answer or problem

6* No borrow; x-0 fact in problem

7. No borrow; 0-0 fact in problem

8. No borrow; x-x fact in problem

9. No borrow; small; unequal lengths

10.. No borrow; large; unequal lengths

11. Simple borrow

12. Simple borrow; one digit subtrahend

13. Simple borrow; one digit answer

14. Simple borrow; medium

15. Borrow; one digit from large nudber

16. Borrow; medium;subtrahend one digit short

17. Borrow; medium; unequal lengths

18. Separated borrows

19. Repeated borrows,

20* Borrow across 0

21. Borrow across two (or more) O's

22* Large numbers

With the exception of "Large numbers" which.was omitted

from consideration because it included several of the other

categories (e.g., "Borrow one digit from large number,"

"Repeated borrows," "Separated borrows," etc.), the item

forms in the above list were Interpreted so as to represent

18
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mutually exclusive classes of problems.7

By taking intersections of the 21 item forms with the 12 equivalence

classes generated by the algorithmic approach, 37 new classes of sub-

traction problemsobown in Table 1, were obtained.

*.11......wro../.1111.10.1.
Insert Table 1 about here

Prediction and criterion tests (parallel tests A and B respectively)

were constructed by generating two arbitrary items for each of the 37

classes in the intersection set obtained from item forms and equivalence

classes, one for each test. The order of items was randomized in each

test.

Subjects and Procedures. The subjects were 34 ninth grade general mathe-

matics students attending summer school at Shaw Junior High School in

Philadelphia. Tests A and B were administered to the subjects in their

classrooms on consecutive days. The order in which the tests were given

was counterbalanced over subjects. Of the 34 subjects, 25 were in

attendance both days and received both tests A and B.

Analysis of Results. Since Ferguson (1969) in his analysis on-

IThere was one ambiguous class of problems (e.g.,241) which may be
interpreted as borrow or no borrow depending upon how one considers the
problem. Also, some of the item forms (i.e., classes of problems defiaed
by the item forms) are properly contained in other item forms. For example,

"Borrow; medium; subtrahend one digit short" is properly contained in
"Borrow; medium; unequal lengths." In this case, unequal lengths was
taken to mean that the minuend contained two or more digits more than the

subtrahend.
In effect, using mutually exclusive item forms had the effect of

improving the kevel of item forms predictions.by a so-the preient study
provides a more'conservative cogOarison as regards the algorithmic approach.

19
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ly identified hierarchical forms (see Fig. 3 ) involving

three or fewer digit numbers, comparison of the

assessment procedures was done in two parts (1) for the

entire domain of column subtraction problems and (2) for

a restricted domain of stibtraction problems, comparabae

to Ferguson's hierarchical forms. The restricted domain

consisted of classes of problems (marked by. in Table 1)

in the intersection set associated with the first seven

equivalence classes and the thirteen item forms; 1-9,

11-13, and 19, pertaining to basic facts and no borrow

(minus large lengths), simple borrow, and repeated borrow,

respectively. Parallel tests, A' and B°, were constructed

for the restricted domain by deleting from tests A and B

items from those classes of probaems not marked by an

.asterisk.

In order to compare the item forms and algorithmic

Approaches on the unrestricted

domain of subtraction problems, two subtests were con-

structed for each technology, one from test

A and the other from test B. Tnis was done

for each technology by randomly taking one test item from

each class of items associated with an item form or

equivalence class.

To compare performance on the restricted ctomain, a

pair of similar subtests was consttucted from the restricted

tests A' and B! for each technology (algo-
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rithmic, hierarchical forms, and ttem forms).

Performance on the unrestricted subtests pro-

vided the basic data for comparison of the algorithmic

and item forms technologies for the unrestrictod domain

of subtraction problems. Performance on the restricted

sdbtests provided the basic data for comparison of the

algorithmic, item forms, and hierarchical forms techno-

logies on the restricted domain of subtraction problems.
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RESULTS AND DISCUSSION

Levels of Predictability. Table 2 shows the levels of predictability

and correlation between items belonging to the same class for each of

the various types of tests. The top half of Table 2 shows the levels

of predictability for tests measuring performance on the unrestricted

domain of subtraction.problems.

Insert Table 2 about here

In regard to the first criterion (p. 14), the overall levels of

predictability on individual items were approximately the same for all

unrestricted tests. However, the correlation between corresponding

test A and test B items for equivalence classes, .53, was significantly

greater (p ( .05, Edwards, 1966, p. 82) than the correlation, .39,

between corresponding items for item forms. This correlation for

equivalence classes was also higher, although not significantly so,

than that for the intersection of equivalence classes and item form.

(.49).

The difference in correlations between equivalence classes and

item forms was due to the significantly higher (p .05, Edwards, 1966,

p. 53) levels of predictability for equivalence classes for those test
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A items on which subjects were not successful. Furthermore, the level

of predictability for those test A items on which subjects were not

successful was also significantly greater (p < .05) for equivalence

classes than for the intersection of item forms and equivalence classes.

This latter result must be tempered, however, because the difference in

levels of predictability between the intersection and equivalence classes

for those test A items on which subjects were successful was also signi-

ficant (p ( .05). (The corresponding difference between equivalence

classes and item forms was not significant.)

In effect, the test constructed on the basis of the algorithmic

technology with approximately 57% as many items (12 as compared to 21)

gave better predictions on individual items than the corresponding test

for item forms. Furthermore, tests formed from the two algorithms based

on "borrowing" (see p. 16) had 65% and 75% levels of prediction where

subjects were unsuccessful on test A items with overall levels of pre-

dictability at 78%. These levels of prediction were obtained with only

6 and 5 items for the respective tests. Hence, with considerably fewer

items these tests were not only as effective in overall predictability as

the intersection and item forms tests but also had higher (and for the 5

item test significantly higher, p .05) levels of predictability than

the item forms test for those test A items where subjects were unsuccessful.

It is also worth noting that of the four algorithms (ump. 16)
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originally identified, the two based on "borrowing" had significantly

higher (p ( .05) levels of prediction than the two algorithms based on

!Iequal additions" where subjects were unsuccessful on test A items

(65% and 75% as compared to 29% and 32%). The implication of this, of

course, is that for these subjects the tests formed from algorithms

based on "borrowing" were better predictors than the tests formed from

algorithms based on "equal additions." This difference between the two

types of subtraction appears to reflect the fact that "borrowing" is

the more common procedure taught in American schools.

The components of variance (Winer, 1962, pp. 184-191) shown in

Table 3 are also relevant to criterion one (p. 14). Consider the contri-

bution of variance due to the interaction of subjects by items within

classes. Although this source contributed most of the variance for each

of the three types of test on the unrestricted domain, the contribution

was lowest for equtvalence classes. Furthermore, the sources of variance

due to classes and subjects by classes v.xe greater for equivalence

classes than item forms. These results tend to confirm the previous

finding that even with fewer items, the algorithmic approach was more

sensitive than the item forms technology in pinpointing strengths and

weaknesses of individual students.

Insert Table 3 about here

The levels of predictability and correlation associated with the

restricted domain are shown in the lower half of Table 2. None of the

obtained results was significantly different. Restricting the domain,
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however, had the effect of increasing overall predictability for each

technology. Since most of the problems in the restricted domain appeared

to be relatively easy for the subjects, the levels of predictability for

"success" items were quite high. The relatively small number of errors

involved overall suggests that the low levels of predictability for items

on which subjects were not successful may have been due to careless

mistakes.

Components of variance could not be obtained for most of the tests

in regard to the restricted domain because estimates of variance due to

items within classes were negative for all restricted tests except item

forms. In that case, the contribution of variance due to persons by

items within item forms was 77%.

Generalizability Results. In regard to the second criterion (p. 14),

Table 4 shows the coefficients of generalizabilityce.andoes for each

type of test. The coefficientde is a lower bound estimate of how well

one can generalize from a subject's obtained score on a test to his per-

formance on the stated domain of items (Cronbach et al., 1963), in this

case column subtraction problems. It is also an intraclass correlation

coefficient for estimating reliability (Winer, 1962, pp. 124-132). The

coefficientoes (Rajaratnam, et al., 1965) is an estimate of generaliza-

bility for stratified parallel tests, tests for which the domain of items

cle mites are estimates of generalizability from a single test to
a well-defined domain of items and correspond to Cronbach's (1951) c* and

Rajaratnam et al.'s (1965) 010, respectively, which are estimates of
generalizability from the mean of two or more parallel tests (to a well -
defined domain).
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is divided into different classes as was the case in this study.

Insert Table 4 about here

The top half of Table 4 shows the coefficients of generalizability

for the unrestricted domain of subtraction problems. Of these, the

intersection test provided the highest estimates of generalizability;

those for equivalence classes were next; and item forms last. Again,

it is of interest to note that the two subtests formed from "borrowing"

algorithms had levels of generalizability as high as the subtest formed

from item forms. For the test with 6 items ce = .75; ot's = .60, and

for the test with 5 items cot' = .64; C4S = .62.

On the restricted domain of subtraction problems, the coefficients

shown in the lower half of Table 4 for the restricted intersection,

restricted item forms, and restricted equivalence classes were greater

than the coefficients for Jerarchical forms.

The values ofoc' andoes obtained for the restricted tests were not

the same as those obtained for the unrestricted tests (e = 20.6, 6df,

p < .01; oe = 26.19, 6df, p ( .01, Edwards, 1966, p. 83). In effect,

a subject's score on a restricted test and in particular on the test

generated by hierarchical forms could not viably be generalized to the

entire domain ofcclumn subtraction problems. Hence, although the overall

levels of predictability for these tests were higher than those generated

from the unrestricted domain, the above results indicate that this was

accompanied by a significant loss in generalizability.

26
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EfficiencyCriterion. The data clearly show that the algorithmic

approach was more efficient than the item forms technology. Only 12,

as compared to 21, items were required to achieve about the same

overall level of predictability and somewhat better levels of generali-

zability. The increase in efficiency evident with the tests formed

from the two "borrowing" algorithms is even more striking. With only 6

and 5 items, respectively, they had essentially the same levels of pre-

dictability and generalizability as the item form test with 21 items.

Furthermore, although it seems reasonable to suppose that the

intersection test with 37 items would produce the highest levels of

predictability and generalizability, in general this was not the case.

With a third (12 as compared to 37) as many itens, the algorithmic

approach maintained as high a level of overall predictability and only

slightly (nonsignificantly) lowyr levels of generalizability. The item

forms test, which had slightly more than half the number of items as the

intersectiou test, also obtained as high a level of predictability

although somewhat lower levels of generalizability. Overall, these

results lead one to suspect that under the testing conditions used the

algorithmic approach for assessing mastery approaches asymptote.

Further improvement would almost necessarily require more rigorous testing

conditions (cf., Scandura & Durnin in Scandura, 1972).

Even on the restricted domain the equivalence classes test appeared

to be the most efficient. Overall levels of predictability were the

same for all tests, while generalizability coefficients were somewhat

higher for the equivalence class and item forns tests. These higher levels of
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generalizability, however, were obtained with half as many items in the

ease of the equivalence classes test.

Hierarchical Analyses. The fourth criterion (p. 14) is concerned with

the fact that efficiency nay sometimes be increased through the use of

conditional testing procedures, at least where the vsrious items lend

themselves to Guttman (1947) type scaling. In the present study, however,

it must be noted that each of the technologies compared provides an

explicit basis for ordering items that is independent of emiirical data.

Figures 3, 4 and,5, respectively, show the various hierarchies

(partial orderings) proposed for hierarchical forms (Ferguson, 1969), item forms

(lively et al., 1968), and the algorithm of Figure 1.

...11/1INIMNIIWINIIIIIIOMIONIIIIIIININOMMII=1.ammIle.11=111.1111100...10.

Insert Figures 3, 4 and 5 about here

......

The method of analysis used to determine the relative validity of

the three hierarchies was similar to that used by Gagne (1962) to confirm

relationships between higher and lower levels in task analysis.

In Table 5, the positive-positive (44) superordinate-subordinate

relationship shows for each hierarchy the number of cases where uniform

success on the, two superordinate problems associated with a class implied

uniform success on all problems associated with relatively subordinate

classes. The (--) superordinate-subordinate relationship shows the number

of cases where failure on at least one of the superordinate problems in a

superordinate
Aclass implied failure on at least one of the relatively subordinSte

classes. The (+-) superordinate -subordinate relationship shows the
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number of cases where success on a superordinate class failed to indicate

success on all relatively subordinate classes. The ( -+) superordinate

subordinate relationship shows the number of cases where there was uniform

success on all subordinate classes but not on the relatively superordinate

class.

Insert Table 5 about here

The ++ and -- relations, therefore, validate an ordering whereas

the 4- relation contradicts one. The -+ relation is considered neutral.

The proportion of verifying cases to the number of verifying plus

contradictory cases was..82 for the equivalence classes hierarchy as

compared to .74 for the item forms hierarchy (p < .01). None of the

differences on the restricted domain were significant. To summarize,

then, the algorithmic approach not only providedthe best and most

efficient method for assessing behavior potential, but the hierarchy

induced by the approach could be used to increase this efficiency even

more through the use of conditional testing procedures which involve

branching (with or without computer assistance).

implications. On almost all measuresobtained the algorithmic approach

to assessing behavior potential proved to be either better, or at least

as good, as the technologies based on item forms or hierarchical analysis.

Nonetheless; at first thought the item forms technology might appear to

have a certain advantage over the algorithmic approach. Given an item

form, it is a routine matter to generate an instance of that item form.

29
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This could be particularly useful in computer assisted testing (e.g.,

Shoemaker and Osburn, 1969; Ferguson, 1969), since the computer could

be programmed to randomly generate test items within forms. (The item

forms themselves, however, must be determined directly by the test

constructor.)

In the algorithmic approach this would have to be done indirectly.

Nonetheless, the computer, once given an algorithm, could be programmed

to automatically trace out the paths, identify the equivalence classes

of problems, randomly generate test items in the equivalence classes,

and order the items for testing. That is, the computer should be able

to generate not only the items but also the item forms (i.e., equivalenc

classes) themselves.

Moreover, on further reflection, it becomes apparent that the more

circuitous route required for generating test items via the algorithmic

approach has a further major advantage. It provides an explicit basis

for remedial instruction. To see this, we assume in accordance with

Scandures (1971a, 1971b, 1972) theory that subjects actually use rules

(algorithms) to generate their behavior. Then, because each equivalence

class of items corresponds to a unique path of a rule, and because the

steps in each such path are known explicitly to the instructor (or

computer), each pupil can be given specific instruction to overcome his

inadequacies. Put succinctly, he can be taught the needed paths. These

ideas constitute the theoretical basis for a series of self-diagnostic

and remedial tapes and workbooks developed by the Mathematics Education

30
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Research Group (e.g., Scandura, 1970c; Scandura, Gramick & Durnin, 1971)

and could be extended for use in computer assisted testing and

instruction.
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Table 1
36.

Stimulus Instances
Equivqlence from Classes in
Classes 7..tem Forms Ibit.ZattLaag&i2n

1 . ° Basic facts ; minuend< 10

do Subtract 0

Answer 0IN..IbAllIon

9

4

8
-8

2, 0 Basic facts; minuend;'10

°Basic fact; minuend= 10
111111~1~01M00 ...~~.
3, Orio borrows no 0 in answer or problem

alS1181w

tt

ft

ft

; x-0 fact in problem

; 0-0 fact in problem

; x-x fact in problem

; small unequal lengths

13
-6

10

45
-23

36
-10

802
-301

342
-321

268
-24

; large unequal lengths 28759643
-42710241.qb..I1...

0No descriptionl.
OSimple borrow

e)Simple borrow; one digit answer

0 %opeated borrow

153
-92

35
-17

68
-59

811
-623



Table 1 cont.

Equivalence
Classos Item Forms the Inte.rsection

&Simple borrow; 1 digit subtrahend

37.

Stimulus Instances
from Classes in

6. Repeated borrow

7. 'Simple borrow

38
.c)

1563

352
-236

'Simple borrow; 1 digit answer 723

Simple borrow; 1 digit subtrahend 5673
.8

Simple borrow; medium 68423
-51712

Borrow; 1 digit from large number 9463217
-9

Borrow; medium; unequal lengths 85463
.-392

Repeated borrows 4223
-3332

Separated b,.)rrows 98542
.46,7

Borrow; medium; subtrahend 1 digit short 74918
11arao=ww..1.....0.4.................. .......*.
8. Borrow; medium; subtrahend 1 digit short 15362

-8071

Repeated borrows

Separated borrows

9. Borrow ctcross 0

12459
-6990

186421

603
-578

Borrow across two (or more) O's 5002



Table I cont.

Equivalence
Item FornIs

38.

Stimulus Instances
from Classes in
the Intersection

10. Borrow across 0 4029
-3642

Borrow across two (or more) O's 70035
-41362

11* Borrow across 0 1500
:DM

Borrow across two (or more) O's 14003......A.:.9678
12. Borrow adross 0 11029

-8437

Borrow across two (or more) O's 160018
-76325
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Table 3

Components of Variance ,In Item ScoresT la S M .

SouRcE TN?* Rstx mitt Titti Rom 1 fauttrAibta. tilbsES

agai2gts

IbiS 1.144 . 420 1 .539
cr 1,014 .008 1 019

9.11.1ggsa

'FiS 1.887 1.443 1 2.525
aor .033 .020 .045

% 19 15 22

8 6 19

Items
(within
classes)

MS

,Sul.....itipcts by
g kssas:

1L11219-9.-tzl-ily
Items

(within
classes)

MS .089 .084 1 .083

. 157 .106

.003.

2 1 12

.182

004

. 163 .124 .194

.037 *020 .055

21 15 27

$4:L .089 .084

51 63 140

.083

40 .
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Table 4

Coefficients of Generalizability et,* and si's
for each Test

Tests ot ties
Intersection .85 .87

Item Forms .62 .66

Equivalence Classes .71 .74

Restricted Intersection .39 .46

Hierarchical Forms .15 ..14
Restricted Item Forms 429 .25

Restricted Equivalence .30
Classes

Note: Ke =js between neonleg....1.3eo.e)..21
MS between people + MS people x tests

Sz (2C" 6 siz- la S.:.=
c S
%Pe

where Svg is test variance, S24. is item variance
within a class and S:is class variance.
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Table 5

42.

Pass(+)-Fail(-) Relationship Between Superordinate
Problems and Relatively Subordinate Problems

H e arch es

Item Forms

Equivalence
Classes

Number of Cases for each
Relationship Between Super-
ordinate Problems and Rela-
tively Subordinate Problems

L.

Super.4.
Sub.+

2.

Super,
Sub

3.

Super.+
Sub

4.

Super.
Sub.+

Test for
Verifying
Hierarchies

Proportion

4, 3

.74

:82

Bierarchil
Forms

Restricted
Item Forms

Restricted
Equivalence
Classes

64 3 13 20 .80 .84

181 13 34 22 228 .85

92 2 13 18 107 . 88
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Figure Captions

Figure 1: Subtraction Algorithm

Figure 2: Directed graph and paths of subtraction algorithm

Figure 3: Hierarchical Forms adapted from Ferguson (1969)

Figure 4: Hypothesized hierarchy for subtraction item forms
adapted from Hively, Patterson, & Page (1968)

Figure 5: Hierarchy of Paths based on Subtraction Algorithm

42



,)

1. Go to righrmi
most column

401001101111110111b

Go to next
column to left

Yes

44.

Is
top no.

bottom
no.?

Yes
Subtract the bottom
no. from the top
no. using facts for
top no.11. 9.

Are
there

any more
olumns

Is

there only
one column to

left with 1 as
op no.?

4

Subtract the bottom
no. from the top no.
using facts for top

10.
tr 1110111.

Go to next
column

Is

0 top
no. in
this column

6.

Change 0
to 9.

No

1100/01.10.7.01211%

Change top no. to next lower no.;
return to original column and place
"1" in front of top no.; subtract;
and go to the next column to the left.

Figure 1: Subtraction Algorithm



Paths

Directed Graph

START 3 STOP
Alr -4*.

7 7Nll
ti-

t% Stimulus Instances from
Corresponding Equivalence
Classes

I 2.
I .

2.

3.

4.

3
t0 rarro....911 tip MINIIIIIMMW4 gir

3
I le-7'N

10.

11

7
b 3

"MIMI

ros.* 7

-

--411

41

-3

13
-6

258
-13

153
-92

54
-27

1563
-875

268
-97

1663
-824

603
-578

..1001.10 4029
-3642

1300
-423

16059
-8797

Figure 2: Directed graph and paths of subtraction algorithm
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Subtracts 3 digit nos.
with borrowing from the
tens and hundreds place.

Subtracts 3 digit nos.
with borrowing from the
tens or hundreds place.

V I

Subtracts two digit
numbers with borrowing
from tens place

Solves subtraction
problems with no
borrowing. Three
and four digit com-
binations.

Solves subtraction
problems from memory
for suns 4: 9.

46.

Solves subtraction
problems from memory
for two.digit sums1E20.

Fipre 3: Hierarchical Forms adapted from Ferguson (1969)
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Borrow; unequal
lengths; medium.

Borrow; one
digit from
large number.

Borrow; medium;
subtrahend one
digit short.

Repeated

borrows.

47.

Borrow across
two O's.

Separated
borrows.

Borrow across
0.

Simple borrow;
medium.

Simple borrow;
one-digit
subtrahend..

Simple borrow;
one-digit answer.

No borrow large;
unequal lengths.

A

dl
Simple
borrow.

No borrow;
small;
unequal
lengths

fpgrmarosigl"Noloo"01114

No borrow;
no 0 in
answer or
problem.

A

Basic fact.
minuend,10.

No borrow;
x-0 fact
in
problem.

No borrow;
0-0 fact
in
problem.

No borrow;
x-x fact
in
problem.

Basic fact
minu*nd 10.

Subtract
0.

Answer
m 0.

Figu....7e 4: Hypothesized hierarchy for subtraction item forms
adapted from Hively, Patterson, & Page (1968)
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4

*

12

11

6

1

Figure 5: Hierarchy of Paths based on Subtraction Algorithm
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